
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

 ISSN: 2395-5317 ©EverScience Publications 16

Enhancement of Continuous Cloud Map Reduce via

Splitting, shuffling and Spot with Snap shot Process
V. Devi

PG Student, University College of Engineering, konam

M. Muthu Selvi

Assistant Professor, University College of Engineering, Konam

Abstract – In the existing process of continuous cloud map

reduce in that there used for enhancement using splitting process

and shuffling process for the enhancement. In Cloud’s spot

instances is deal with massive machine terminations caused by

process termination. In this process to avoid termination the

Snapshot technique will used. If there used the proposed

snapshot technique means the total process time of each file must

calculated in that the process the Snapshot functionality has

been included in C-CMR in order to provide the user with a

means to view the results of a Map-Reduce job run before the

completion of the job. For example, for a 20 min. long job, the

user could request for a snapshot of the job results at time

T=15min. It can visualize the output corresponding to the result

of the Map and Reduce operations performed on the data that

has arrived at the input from the start of the job till T=15min.

This allows the user to get an idea of the results beforehand,

instead of waiting for the entire job to be completed. Also, for

batch processing, if no more input data is detected, a “snapshot”

is automatically invoked, writing the results to S3. The

implementation involves pushing a “flag” file in S3 when a user

requests a snapshot. The snapshot thread monitors the S3

location to detect the availability of this file. When the file is

detected, the thread deletes the file, reads the output queue to

gather results generated, and writes the results to the S3 bucket

specified as the output location. This file can be downloaded by

the user to read the snapshot of the result whenever required. As

the functionality is implemented as a separate thread, it does not

interfere with the normal operation of the MapReduce job, and

occurs concurrently with it. This also leads to network and

processor parallelism as the data fetch and store stages occur

concurrently with the processing stages, thus reducing

bottlenecks.

Index Terms – Cloud, Splitting, Shuffling, C-CMR.

 1. INTRODUCTION

JEffrey Dean and Sanjay Ghemawat [1] defined

MapReduce(MR) as a programming model and an associated

implementation for processing and generating large data sets.

Cloud MapReduce (CMR) is an implementation of

MapReduceframework on Amazon Web Services [2][3]. By

using queues, CMR easily parallelizes the Map and the

Shuffling stages. By using Amazon’s visibility timeout

mechanism, it implements fault-tolerance. CMR is a fully

distributed architecture with no single point of failure and

scalability bottleneck as it exploits Amazon Web Service’s

fully distributed features. Beyond using Amazon Web

Services to simplify the implementation, this architecture is

novel in many aspects as compared with the master/slave

Hadoop [4]. It is faster than Hadoop and is very simple as

well (3000 LoC, compared toHadoop’s nearly 300K LoC).

2. RELATED WORK

CMR, by itself, is not well suited for spot market

environments to cope with massive machine terminations

caused by spot price fluctuations when using spot instances on

Amazon EC2.

 Spot Cloud Map Reduce

 C-CMR via Splitting and shuffling

2.1 Spot Cloud Map Reduce

CMR, by itself, is not well suited for spot market

environments to cope with massive machine terminations

caused by spot price fluctuations when using spot instances

on Amazon EC2. If Map Reduce jobs are running on spot

instances, and these instances are turned off and on due to

fluctuations in prices of spot instances, then it leads to

increase in the job completion time to a very great extent. The

existing CMR architecture can be enhanced to tackle this

issue of massive termination of spot instances.

 2.2 C-CMR via Splitting and shuffling Splitting

In which the input data is split into chunks and distributed

across multiple nodes to be processed upon by a user defined

function. Multiple chunks so that it can be processed by

multiple Map workers simultaneously. A reference to each

chunk is kept in the input queues, which will be picked by one

of the splitter to process. Input queue is an instance of SQS

provided by Amazon.

Shuffling

By using queues, CMR easily parallelizes the Map and the

Shuffling stages. CMR uses the network to transfer

intermediate key- value pairs as soon as they are available,

thus it overlaps data shuffling with Map processing.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

 ISSN: 2395-5317 ©EverScience Publications 17

Overlapping shuffling is used when pipelining MapReduce.

Compared to the implementation to pairwise socket

connections and buffering/copying mechanism, the

implementation using queues is much simpler.

3. PORPOSED MODELLING

This work describes and execution of Cloud Map Reduce by

Amazon Web Services. We start with the high level

architecture, and then discuss implementation issues. CMR is

a scalable, flexible, fast implementation of the Map Reduce

structure that allows programmers to use the repayment of

organization big information dispensation jobs on an obscure

plat-form. It provides soaring facts throughput as facts comes

beginning several servers and connections with the servers

potentially all cross dissimilar system path. It is storage for

the internet. Amazon S3 provides a simple web interface that

can be used to store and retrieve any amount of data. This is

used in CMR to provide input data to process before starting a

CMR job.

This is a particularly presented and flexible non-relational in

order store, which offloads the service of verification

administrator. Customer has an ability to provide combiner

occupation, which is parallel to decrease function. The clothes

which affect combiner occupation on the Mappers’ production

are called Combiners. Combiners are frequently used to

implement record side pre-aggregation which reduces the size

of system shift required among Map and Reduce phases. A

recently planned and implemented planning of the system,

modeled after the CMR framework, incorporating changes

necessary for dispensation streaming data and incremental

online aggregation. Work describes and completion of an

original advance designed for optimizing and attractive CMR

by cylinder among plan and decrease phases.

Spot Cloud Map Reduce (Spot CMR), a Map Reduce

execution modified for a spot promote situation. To the best

of our knowledge, it is the primary Map Reduce execution

that might accept huge node terminations induced by the price

variation in a spot market. Toward conquer the mark

throughput control of an only easy DB area; every employee

arbitrarily picks one of some domains to mark the position.

During classify construct a major scheme on top of AWS, a

original totally spread planning, specifically CMR, to execute

the Map Reduce training form. CMR is a significant advance

to upward meting out frameworks by cloud services.

4. RESULTS AND DISCUSSIONS

In this section all the results and the discussions should be

made.

Figure 1 Resultant Graph of the Proposed System

5 CONCLUSION

Work succeeded in extra improving on the labor of CMR to

offer further functionality and improved production by

employing pipelining among the Map and Reduce phases. In

C-CMR also included maintain for stream information

processing, snapshots and cascaded MR jobs in CMR. This is

a significant progress in the situation of present facts

processing desires, as evidenced by new flow processing

applications. The progressing Window functionality to have

been moderately implemented in C-CMR needs to be during

totally valuable with a parallel, concurrent module for

aggregating the result formed by the Mappers according to the

time-window provided by the user. This will suggest true

suppleness to the client to observation the Mapper production

of some specified time-window of the put in flow.

REFERENCES

[1] Dean J. and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” in OSDI, 2004, pp. 137–150.
[2] Guo C., G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu, “Bcube: a high performance, server-centric network architecture

for modular data centers,” in Proc. 2009 SIGCOMM, pp. 63–74.
[3] Karve R., D. Dahiphale, and A. Chhajer, “Optimizing cloud mapreduce

for processing stream data using pipelining,” in EMS, 2011, pp. 344–

349.
[4] Mysore R. N., A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-

hakrishnan, V. Subramanya, and A.Vahdat, “Portland: a scalable fault-

tolerant layer 2 data center network fabric,” in Proc. 2009 SIGCOMM,
pp. 39–50.

[5] Vasudevan V., A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G.

R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-

grained tcp retransmissions for datacenter communication,” in Proc.

2009 SIGCOMM, pp. 303–314.

[6] Vasudevan V., A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G.
R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-

grained tcp retransmissions for datacenter communication,” in Proc.

2009 SIGCOMM, pp. 303–314.
[7] H. Liu and D. Orban, “Cloud mapreduce: a mapreduce implementation

on top of a cloud operating system,” in Proc. 2011 IEEE International

Symposium on Cluster Computing and the Grid, vol. 0, pp. 464–474.
[8] Yang, S. Kamata, and A. Ahrary, “NIR: content based image retrieval

on cloud computing,” in Proc. 2009 IEEE International Conference on

Intelligent Computing and Intelligent Systems, vol. 3, pp. 556–559.

